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Exchangeability

• The samples (y1, ..., yn) are exchangeable
if p(y1, ..., yn) is invariant to permutations of the index
(1, ..., n)

• Exchangeability is weaker condition than i.i.d(identical,
independent distribution)

• Example : Sampling without replacement is not i.i.d, but
exchangeable.
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Exchangeability

• The parameters (θ1, ..., θJ) are exchangeable
if p(θ1, ..., θJ) is invariant to permutations of the index
(1, ..., J)

• Example : X ∼ η1N(µ1, σ
2
1) + η2N(µ2, σ

2
2) + η3N(µ3, σ

2
3),

where η1 + η2 + η3 = 1
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Why hierarchical model?

What will you answer to this question?

• The tumor probabilities θ vary because of differences in rats
and experimental conditions among the experiments.

• What’s tumor probabilities of 71’s experiments’ conditions??
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Why hierarchical model?

Frequentist

• Frequentist 1 : θ71 = 4
14 , since all experiments were done at

different environment

• Frequentist 2 : θ71 =
∑

yj∑
nj
, since all experiments are same

essentially

Frequentist - problem

• Too extreme(Too strong assumption)
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Why hierarchical model?

Half Bayesian

• Assume yj ∼ Bin(nj , θj), and θj are unknown. i.e. random.

• Make prior distribution with (nj , yj), j = 1, ..., 70. Then,
update θ’s distribution with y71
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Why hierarchical model?

Half Bayesian

• Because beta distribution is conjugate prior, assume
θ ∼ beta(α, β).

• Since observed sample mean and standard deviation of the 70
values yj

nj
are 0.136 and 0.103, we can estimate

(α̂, β̂) = (1.4, 8.6)

• y71 = 4 and nj = 14, so posterior distribution about θ71

become beta(5.4, 18.6)
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Why hierarchical model?

Half Bayesian - problem

• If we want inference about first 70 experiments, data would be
used twice

• The point estimate for α and β seems dogmatic, and using
any point estimate for α and β necessarily ignores some
posterior uncertainty.

The analysis using the data to estimate the prior parameters, called
empirical Bayes, can be viewed as an approximation to the
complete hierarchical Bayesian analysis.
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Hierarchical model - General

Observation y, parameter θ, hyperparameter φ

1 Write the joint posterior density, p(θ, φ|y), in unnormalized
form as a product of the hyperprior distribution p(φ), the
population distribution p(θ|φ), and the likelihood p(y |θ).

2 Determine analytically the conditional posterior density of θ
given the hyperparameters φ; for fixed observed y, this is a
function of φ, p(θ|φ, y).

3 Estimate φ using the Bayesian paradigm; that is, obtain its
marginal posterior distribution, p(φ|y).
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Hierarchical model - General

Drawing simulations from the posterior distribution

4 Draw φ from p(φ|y).
• If φ is low-dimensional, the methods discussed in Chapter 3

can be used
• If φ is high-dimensional, more sophisticated methods such as

described in Part III may be needed.

5 Draw θ from p(θ|φ, y)

6 If desired, draw predictive values ỹ from the posterior
predictive distribution given the drawn θ.
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Hierarchical model - Binomial model

Complete Hierarchical Bayesian

• Assume yj ∼ Bin(nj , θj), and θj ∼ Beta(α, β), and θ, α, β are
all random.

• p(θ, α, β | y) ∝ p(α, β)p(θ | α, β)p(y | θ, α, β)

∝ p(α, β)
∏J

j=1
Γ(α+β)

Γ(α)Γ(β)θ
α−1
j (1− θj)β−1∏J

j=1 θ
yj
j (1− θj)nj−yj

• p(θ | α, β, y) =∏J
j=1

Γ(α+β+nj)
Γ(α+yj)Γ(β+nj−yj)

θ
α+yj−1
j (1− θj)β+nj−yj−1
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Hierarchical model - Binomial model

Complete Hierarchical Bayesian

• Since p(θ,α,β|y)
p(θ|α,β,y) = p(θ,α,β,y)

p(y)
p(α,β,y)
p(θ,α,β,y) ,

p(α, β | y) ∝ p(α, β)
J∏

j=1

Γ(α + β)

Γ(α)Γ(β)

Γ (α + yj) Γ (β + nj − yj)

Γ (α + β + nj)

• Choose hyperprior : noninformative & proper posterior. e.g.

p(α, β) ∝ (α + β)−5/2
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Hierarchical model - Binomial model

Drawing simulations from the posterior distribution

4 Draw φ from p(φ|y).
• If φ is low-dimensional, the methods discussed in Chapter 3

can be used
• If φ is high-dimensional, more sophisticated methods such as

described in Part III may be needed.

5 Draw θ from p(θ|φ, y)

6 If desired, draw predictive values ỹ from the posterior
predictive distribution given the drawn θ.
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Hierarchical model - Normal model

The data structure

• With known nj , σ2 and unknown(=random) θj ,

yij | θj ∼ N
(
θj , σ

2) , for i = 1, . . . , nj ; j = 1, . . . , J

• Let ȳ.j = 1
nj

∑nj
i=1 yij and σ

2
j = σ2/nj . Then

ȳ.j | θj ∼ N
(
θj , σ

2
j

)
• Let ȳ.. =

∑J
j=1 nj ȳ.j∑J
j=1 nj
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Hierarchical model - Normal model

Frequentist

• For estimate θJ+1, there are two choices
1 θ̂J+1 = ȳ.j+1

2 θ̂J+1 = ȳ..

• Using ANOVA(analysis of variance), we can decide which
estimate to use.
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Hierarchical model - Normal model

Hierarchical model

• We assume θj are drawn from a normal distribution N(µ, τ):

p (θ1, . . . , θJ | µ, τ) =
J∏

j=1

N
(
θj | µ, τ2)

• We assign a noninformative uniform hyperprior distribution to
µ, given τ :

p(µ, τ) = p(µ | τ)p(τ) ∝ p(τ)
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Hierarchical model - Normal model

The joint posterior distribution

1 Write the joint posterior density, p(θ, φ|y), in unnormalized
form as a product of the hyperprior distribution p(φ), the
population distribution p(θ|φ), and the likelihood p(y |θ).

2 ...

3 ...

p(θ, µ, τ | y) ∝ p(µ, τ)p(θ | µ, τ)p(y | θ)

∝ p(µ, τ)
J∏

j=1

N
(
θj | µ, τ2) J∏

j=1

N
(
ȳ.j | θj , σ2

j

)
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Hierarchical model - Normal model

The conditional posterior distribution of the normal means, given
the hyperparameters

1 ...
2 Determine analytically the conditional posterior density of θ

given the hyperparameters φ; for fixed observed y, this is a
function of φ, p(θ|φ, y).

3 ...

Since ȳ.j ∼ N
(
θj , σ

2
j

)
and θj ∼ N(µ, τ)

θj | µ, τ, y ∼ N
(
θ̂j ,Vj

)
where

θ̂j =

1
σ2
j
ȳ.j + 1

τ2µ

1
σ2
j

+ 1
τ2

and Vj =
1

1
σ2
j

+ 1
τ2 24



Hierarchical model - Normal model

The marginal posterior distribution of the hyperparameters

1 ...

2 ...

3 Estimate φ using the Bayesian paradigm; that is, obtain its
marginal posterior distribution, p(φ|y).

Since p(µ, τ | y) ∝ p(µ, τ)p(y | µ, τ)

and ȳ.j | µ, τ ∼ N
(
µ, σ2

j + τ2
)
,

p(µ, τ | y) ∝ p(µ, τ)
J∏

j=1

N
(
ȳ.j | µ, σ2

j + τ2)
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Hierarchical model - Normal model

Drawing simulations from the posterior distribution

4 Draw φ from p(φ|y).
• If φ is low-dimensional, the methods discussed in Chapter 3

can be used
• If φ is high-dimensional, more sophisticated methods such as

described in Part III may be needed.

5 Draw θ from p(θ|φ, y)

6 If desired, draw predictive values ỹ from the posterior
predictive distribution given the drawn θ.

• At binomial model, we get p(α, β|y) ∝ ..., but we had to do
some complex work to get sample from posterior distribution

• (Unfortunately), we can do something more in normal model
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Hierarchical model - Normal model

Drawing simulations from the posterior distribution
From

p(µ, τ | y) ∝ p(µ, τ)
J∏

j=1

N
(
ȳ.j | µ, σ2

j + τ2)
, assume τ is known and p(µ | τ) ∝ 1 We can find that

µ | τ, y ∼ N (µ̂,Vµ)

where

µ̂ =

∑J
j=1

1
σ2
j +τ2 ȳ·j∑J

j=1
1

σ2
j +τ2

and V−1
µ =

J∑
j=1

1
σ2
j + τ2
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Hierarchical model - Normal model

Drawing simulations from the posterior distribution
So,

p(τ | y) =
p(µ, τ | y)

p(µ | τ, y)

∝
p(τ)

∏J
j=1 N

(
ȳ.j | µ, σ2

j + τ2
)

N (µ | µ̂,Vµ)

and this identity must hold for any value of µ. So let set µ to µ̂.

p(τ | y) ∝
p(τ)

∏J
j=1 N

(
ȳ.j | µ̂, σ2

j + τ2
)

N (µ̂ | µ̂,Vµ)

∝ p(τ)V 1/2
µ

J∏
j=1

(
σ2
j + τ2)−1/2

exp

− (ȳ.j − µ̂)2

2
(
σ2
j + τ2

)

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Hierarchical model - Normal model

Drawing simulations from the posterior distribution
4 Draw φ from p(φ|y)

• Simulating τ using inverse cdf method(section 1.9), with

p(τ | y) ∝ p(τ)V 1/2
µ

J∏
j=1

(
σ2
j + τ2)−1/2

exp

− (ȳ.j − µ̂)2

2
(
σ2
j + τ2

)


• Simulating µ with

µ | τ, y ∼ N (µ̂,Vµ)

where

µ̂ =

∑J
j=1

1
σ2
j +τ2 ȳ·j∑J

j=1
1

σ2
j +τ2

and V−1
µ =

J∑
j=1

1
σ2
j + τ2
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Hierarchical model - Normal model

Drawing simulations from the posterior distribution

5 Draw θ from p(θ|φ, y)

• simulating θ using

θj | µ, τ, y ∼ N
(
θ̂j ,Vj

)
where

θ̂j =

1
σ2
j
ȳ.j + 1

τ2µ

1
σ2
j

+ 1
τ2

and Vj =
1

1
σ2
j

+ 1
τ2

6 If desired, draw predictive values ỹ from the posterior
predictive distribution given the drawn θ.
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