Hierarchical models

InSung Kong October 20, 2020

Seoul National University

1 Exchangeability

- **2** Why hierarchical model?
- 3 Hierarchical model General
- 4 Hierarchical model Binomial model
- 5 Hierarchical model Normal model

Table of Contents

1 Exchangeability

- 2 Why hierarchical model?
- 3 Hierarchical model General
- 4 Hierarchical model Binomial model
- 5 Hierarchical model Normal model

- The samples $(y_1, ..., y_n)$ are **exchangeable** if $p(y_1, ..., y_n)$ is invariant to permutations of the index (1, ..., n)
- Exchangeability is weaker condition than i.i.d(identical, independent distribution)
- Example : Sampling without replacement is not i.i.d, but exchangeable.

- The parameters (θ₁, ..., θ_J) are exchangeable if p(θ₁, ..., θ_J) is invariant to permutations of the index (1, ..., J)
- Example : $X \sim \eta_1 N(\mu_1, \sigma_1^2) + \eta_2 N(\mu_2, \sigma_2^2) + \eta_3 N(\mu_3, \sigma_3^2)$, where $\eta_1 + \eta_2 + \eta_3 = 1$

Exchangeability

2 Why hierarchical model?

3 Hierarchical model - General

4 Hierarchical model - Binomial model

What will you answer to this question?

Previous experiments:

0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/47	15/46	9/24

Current experiment:

4/14

Table 5.1 Tumor incidence in historical control groups and current group of rats, from Tarone (1982). The table displays the values of $\frac{y_1}{n_i}$: (number of rats with tumors)/(total number of rats).

- The tumor probabilities θ vary because of differences in rats and experimental conditions among the experiments.
- What's tumor probabilities of 71's experiments' conditions??

Frequentist

- Frequentist $1: \theta_{71} = \frac{4}{14}$, since all experiments were done at different environment
- Frequentist 2 : $\theta_{71} = \frac{\sum y_i}{\sum n_j}$, since all experiments are same essentially

Frequentist - problem

• Too extreme(Too strong assumption)

Half Bayesian

- Assume $y_j \sim Bin(n_j, \theta_j)$, and θ_j are unknown. i.e. random.
- Make prior distribution with (n_j, y_j), j = 1, ..., 70. Then, update θ's distribution with y₇₁

Half Bayesian

- Because beta distribution is conjugate prior, assume $\theta \sim beta(\alpha, \beta)$.
- Since observed sample mean and standard deviation of the 70 values $\frac{y_i}{n_j}$ are 0.136 and 0.103, we can estimate $(\hat{\alpha}, \hat{\beta}) = (1.4, 8.6)$
- y₇₁ = 4 and n_j = 14, so posterior distribution about θ₇₁ become beta(5.4, 18.6)

Half Bayesian - problem

- If we want inference about first 70 experiments, data would be used twice
- The point estimate for α and β seems dogmatic, and using any point estimate for α and β necessarily ignores some posterior uncertainty.

The analysis using the data to estimate the prior parameters, called **empirical Bayes**, can be viewed as an approximation to the **complete hierarchical Bayesian** analysis.

1 Exchangeability

3 Hierarchical model - General

4 Hierarchical model - Binomial model

Observation y, parameter θ , hyperparameter ϕ

- Write the joint posterior density, $p(\theta, \phi|y)$, in unnormalized form as a product of the hyperprior distribution $p(\phi)$, the population distribution $p(\theta|\phi)$, and the likelihood $p(y|\theta)$.
- **2** Determine analytically the conditional posterior density of θ given the hyperparameters ϕ ; for fixed observed y, this is a function of ϕ , $p(\theta|\phi, y)$.
- Setimate φ using the Bayesian paradigm; that is, obtain its marginal posterior distribution, p(φ|y).

Drawing simulations from the posterior distribution

4 Draw ϕ from $p(\phi|y)$.

- If ϕ is low-dimensional, the methods discussed in Chapter 3 can be used
- If ϕ is high-dimensional, more sophisticated methods such as described in Part III may be needed.

5 Draw θ from $p(\theta|\phi, y)$

6 If desired, draw predictive values \tilde{y} from the posterior predictive distribution given the drawn θ .

1 Exchangeability

- 2 Why hierarchical model?
- 3 Hierarchical model General

4 Hierarchical model - Binomial model

Complete Hierarchical Bayesian

- Assume $y_j \sim Bin(n_j, \theta_j)$, and $\theta_j \sim Beta(\alpha, \beta)$, and θ, α, β are all random.
- $p(\theta, \alpha, \beta \mid y) \propto p(\alpha, \beta)p(\theta \mid \alpha, \beta)p(y \mid \theta, \alpha, \beta)$ $\propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_{j}^{\alpha-1} (1-\theta_{j})^{\beta-1} \prod_{j=1}^{J} \theta_{j}^{y_{j}} (1-\theta_{j})^{n_{j}-y_{j}}$

•
$$p(\theta \mid \alpha, \beta, y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Complete Hierarchical Bayesian

• Since
$$\frac{p(\theta, \alpha, \beta | y)}{p(\theta | \alpha, \beta, y)} = \frac{p(\theta, \alpha, \beta, y)}{p(y)} \frac{p(\alpha, \beta, y)}{p(\theta, \alpha, \beta, y)}$$
,
 $p(\alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha + \beta + n_j)}$

• Choose hyperprior : noninformative & proper posterior. e.g.

$$p(lpha,eta)\propto(lpha+eta)^{-5/2}$$

Drawing simulations from the posterior distribution

4 Draw ϕ from $p(\phi|y)$.

- If ϕ is low-dimensional, the methods discussed in Chapter 3 can be used
- If ϕ is high-dimensional, more sophisticated methods such as described in Part III may be needed.

5 Draw θ from $p(\theta|\phi, y)$

6 If desired, draw predictive values \tilde{y} from the posterior predictive distribution given the drawn θ .

Exchangeability

- 2 Why hierarchical model?
- 3 Hierarchical model General
- 4 Hierarchical model Binomial model

5 Hierarchical model - Normal model

The data structure

• With known n_j , σ^2 and unknown(=random) θ_j ,

$$y_{ij} \mid \theta_j \sim N\left(\theta_j, \sigma^2\right), \text{ for } i = 1, \dots, n_j; \quad j = 1, \dots, J$$

Frequentist

• For estimate θ_{J+1} , there are two choices

1
$$\hat{\theta}_{J+1} = \bar{y}_{.j+1}$$

2 $\hat{\theta}_{J+1} = \bar{y}_{..}$

• Using ANOVA(analysis of variance), we can decide which estimate to use.

Hierarchical model

• We assume θ_i are drawn from a normal distribution $N(\mu, \tau)$:

$$p(\theta_1,\ldots,\theta_J \mid \mu,\tau) = \prod_{j=1}^J N(\theta_j \mid \mu,\tau^2)$$

• We assign a noninformative uniform hyperprior distribution to μ , given τ :

$$p(\mu, \tau) = p(\mu \mid \tau)p(\tau) \propto p(\tau)$$

The joint posterior distribution

• Write the joint posterior density, $p(\theta, \phi|y)$, in unnormalized form as a product of the hyperprior distribution $p(\phi)$, the population distribution $p(\theta|\phi)$, and the likelihood $p(y|\theta)$.

2 ...

3 ...

$$\begin{split} p(\theta, \mu, \tau \mid y) \propto p(\mu, \tau) p(\theta \mid \mu, \tau) p(y \mid \theta) \\ \propto p(\mu, \tau) \prod_{j=1}^{J} \mathrm{N} \left(\theta_{j} \mid \mu, \tau^{2} \right) \prod_{j=1}^{J} \mathrm{N} \left(\bar{y}_{.j} \mid \theta_{j}, \sigma_{j}^{2} \right) \end{split}$$

The conditional posterior distribution of the normal means, given the hyperparameters

- **1** ...
- **2** Determine analytically the conditional posterior density of θ given the hyperparameters ϕ ; for fixed observed y, this is a function of ϕ , $p(\theta|\phi, y)$.

Since
$$\bar{y}_{.j} \sim \mathrm{N}\left(heta_j, \sigma_j^2\right)$$
 and $heta_j \sim N(\mu, \tau)$

$$\theta_j \mid \mu, \tau, y \sim \mathrm{N}\left(\hat{\theta}_j, V_j\right)$$

where

$$\hat{\theta}_j = rac{rac{1}{\sigma_j^2} ar{y}_{,j} + rac{1}{ au^2} \mu}{rac{1}{\sigma_j^2} + rac{1}{ au^2}} \quad ext{and} \quad V_j = rac{1}{rac{1}{\sigma_j^2} + rac{1}{ au^2}}$$

24

The marginal posterior distribution of the hyperparameters

- **1** ...
- 2 ...
- Setimate φ using the Bayesian paradigm; that is, obtain its marginal posterior distribution, p(φ|y).

$$egin{aligned} \mathsf{Since} \; p(\mu, au \mid y) \propto p(\mu, au) p(y \mid \mu, au) \ \mathsf{and} \; ar{y}_{.j} \mid \mu, au \sim \mathrm{N} \left(\mu, \sigma_j^2 + au^2
ight), \end{aligned}$$

$$p(\mu, \tau \mid y) \propto p(\mu, \tau) \prod_{j=1}^{J} N\left(\bar{y}_{.j} \mid \mu, \sigma_j^2 + \tau^2\right)$$

Drawing simulations from the posterior distribution

4 Draw ϕ from $p(\phi|y)$.

- If ϕ is low-dimensional, the methods discussed in Chapter 3 can be used
- If ϕ is high-dimensional, more sophisticated methods such as described in Part III may be needed.
- **5** Draw θ from $p(\theta|\phi, y)$
- **(b)** If desired, draw predictive values \tilde{y} from the posterior predictive distribution given the drawn θ .
- At binomial model, we get p(α, β|y) ∝ ..., but we had to do some complex work to get sample from posterior distribution
- (Unfortunately), we can do something more in normal model

Drawing simulations from the posterior distribution From

$$p(\mu, \tau \mid y) \propto p(\mu, \tau) \prod_{j=1}^{J} N\left(\overline{y}_{.j} \mid \mu, \sigma_j^2 + \tau^2\right)$$

, assume au is known and $p(\mu \mid au) \propto 1$ We can find that

$$\mu \mid \tau, y \sim \mathrm{N}\left(\hat{\mu}, V_{\mu}\right)$$

where

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}} \overline{y}_{\cdot j}}{\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}} \quad \text{and} \quad V_{\mu}^{-1} = \sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}$$

Drawing simulations from the posterior distribution So,

$$p(\tau \mid y) = \frac{p(\mu, \tau \mid y)}{p(\mu \mid \tau, y)}$$

$$\propto \frac{p(\tau) \prod_{j=1}^{J} N\left(\bar{y}_{,j} \mid \mu, \sigma_j^2 + \tau^2\right)}{N\left(\mu \mid \hat{\mu}, V_{\mu}\right)}$$

and this identity must hold for any value of $\mu.$ So let set μ to $\hat{\mu}.$

$$p(\tau \mid y) \propto \frac{p(\tau) \prod_{j=1}^{J} N\left(\bar{y}_{,j} \mid \hat{\mu}, \sigma_j^2 + \tau^2\right)}{N\left(\hat{\mu} \mid \hat{\mu}, V_{\mu}\right)}$$
$$\propto p(\tau) V_{\mu}^{1/2} \prod_{j=1}^{J} \left(\sigma_j^2 + \tau^2\right)^{-1/2} \exp\left(-\frac{\left(\bar{y}_{,j} - \hat{\mu}\right)^2}{2\left(\sigma_j^2 + \tau^2\right)}\right)$$

Drawing simulations from the posterior distribution

- **4** Draw ϕ from $p(\phi|y)$
 - Simulating au using inverse cdf method(section 1.9), with

$$p(\tau \mid y) \propto p(\tau) V_{\mu}^{1/2} \prod_{j=1}^{J} \left(\sigma_j^2 + \tau^2\right)^{-1/2} \exp\left(-\frac{\left(\bar{y}_{,j} - \hat{\mu}\right)^2}{2\left(\sigma_j^2 + \tau^2\right)}\right)$$

• Simulating μ with

$$\mu \mid \tau, y \sim \mathrm{N}\left(\hat{\mu}, V_{\mu}\right)$$

where

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} \bar{y}_{\cdot j}}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} \quad \text{and} \quad V_{\mu}^{-1} = \sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}$$

Drawing simulations from the posterior distribution

- **5** Draw θ from $p(\theta|\phi, y)$
 - simulating θ using

$$\theta_{j} \mid \mu, \tau, y \sim \mathrm{N}\left(\hat{\theta}_{j}, V_{j}\right)$$

where

$$\hat{ heta}_j = rac{rac{1}{\sigma_j^2} ar{y}_{.j} + rac{1}{ au^2} \mu}{rac{1}{\sigma_j^2} + rac{1}{ au^2}} \quad ext{and} \quad V_j = rac{1}{rac{1}{\sigma_j^2} + rac{1}{ au^2}}$$

(b) If desired, draw predictive values \tilde{y} from the posterior predictive distribution given the drawn θ .